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Abstract 
 
The Radio Plasma Imager (RPI) on the IMAGE satellite stimulates short-range plasma wave 
echoes and plasma emissions, known as plasma resonances, which are then displayed on 
plasmagrams. These resonances are used to provide measurements of the local electron density 
ne and magnetic field strength |B|. The RPI-stimulated resonances are the magnetospheric analog 
of plasma resonances stimulated by topside ionospheric sounders. These resonances are 
stimulated at the harmonic of the electron cyclotron frequency fce, the electron plasma frequency 
fpe, and the upper-hybrid frequency fuh (where fuh

2 = fpe
2 + fce

2). They are also observed between 
the harmonics of fce (i.e., nfce) both above and below fpe, where they are known as Qn and Dn 
resonances, respectively. Calculations of the Qn resonances in the ionospheric environment, 
based upon a thermal Maxwellian plasma model provided confidence in the resonance 
identification between the observations and the estimated values within the experimental errors. 
However, there is often an apparent difference between these resonances in the magnetospheric 
environment and those predicted by calculations based on a Maxwellian plasma model. For 
example, the Qn’s are often (and perhaps consistently) observed at frequencies slightly lower 
than expected for a Maxwellian plasma. We present a new set of resonance calculations using the 
dispersion characteristics of these resonances based upon a non-thermal kappa distribution. We 
then compare these calculations, and those based on a traditional Maxwellian thermal plasma 
model, with the IMAGE/RPI observations. The calculations based on the kappa distribution 
model appear to resolve the aforementioned frequency discrepancy. In addition, the results also 
provide insights into the nature of the electron distribution function in the magnetosphere. 
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1. Introduction. 
 

Natural banded emissions are frequently observed by spacecraft in low inclination orbits 
in the terrestrial magnetosphere (for a review see Kennel and Ashour-Abdalla, [1982]) and in the 
magnetospheres of other planets, e.g., Jupiter, Saturn and Uranus where in-situ measurements 
have been obtained [Kurth, 1992]. The most important feature of these emissions, which is 
common to all these observations, is that they occur between harmonics of the electron cyclotron 
frequency. Several interpretations of these emissions of magnetospheric origin have related them 
to plasma resonances stimulated by ionospheric topside sounders because of the similarity in the 
observed frequency spectra [Fredricks, 1971; Oya, 1972; Christiansen et al., 1978; Benson and 
Osherovich, 1992; Osherovich et al., 1993; Benson et al.,2001]. These resonances are observed 
both above and below the electron plasma frequency fpe, and are known as Qn and Dn 
resonances, respectively. In addition to these resonances, the ionospheric topside sounders also 
produce plasma resonances at the harmonics of the electron cyclotron frequency fce, fpe, and the 
upper-hybrid frequency fuh, where fuh

2=fpe
2+fce

2 [see, e.g., the review by Muldrew, 1972a]. They 
have also been stimulated and induced in the magnetosphere by the Radio Plasma Imager (RPI) 
on the IMAGE satellite [Benson et al., 2003]. These resonances provide and independent 
diagnostic method for determining the local electron density ne and magnetic field strength |B| 
and can be used as an inversion tool to infer properties of the plasma particle distribution 
function. 

 
It is generally well known that the dispersion characteristics ( )diagramkω − of the 

Bernstein modes (at least for Maxwellian distributions) change considerably between harmonics 
of the cyclotron frequency when one compares the dispersion curves of the cyclotron band that 
contains the upper hybrid waves, and the bands above it, with those bands below the one 
containing the upper hybrid frequency. In other words, a Bernstein mode propagates in each 
cyclotron harmonic band ( )1en nωΩ < < + Ωe , but how it does so depends upon whether their 
frequency lies above, below, or in the upper hybrid frequency band. The waves in those bands 
with uhω ω< start at frequencies ( )1 enω + Ω at long wavelengths (i.e. small ) and 
descend to 

2 2 / 2eρe kλ ⊥=

enω Ω when e nλ >> . Those waves with uhω ω> start at enω Ω  ascend to a peak 

near e nλ ∝ , or similarly 2ek nρ⊥ ∝ , and then return to enω Ω for e nλ >>  [Kamimura, et. 
al., 1978]. In these high frequency harmonic bands, the modes have a zero group velocity 
( )v / kω= ∂ ∂ 0=g  for e nλ ∝ , and therefore there is a neighboring range of eλ for which the 
group velocity is small. Thus the bands at the upper hybrid level and above are limited to only 
part of the frequency range, whereas those below the upper hybrid branch extend over the entire 
range of frequencies between the harmonics. These peaks in the dispersion profiles, known as the 
Qn-resonances, do not exist for the cyclotron bands below the upper hybrid level. They only 
appear in the high frequency electrostatic regime (i.e., the short wavelengths regime where 

( )ek O 1 or greaterρ⊥ ) of the dispersion profile suggesting that they are of electrostatic nature. 
The Qn resonances, as generated by ionospheric topside sounders, have been attributed to a close 
matching of the perpendicular group velocity vg of the propagating Bernstein (or ECH) waves to 
the satellite velocity vs [Muldrew, 1972]. The wave in the upper hybrid branch is special since 
the electrostatic band starts at uhω ω= , rather than at the next higher cyclotron harmonic, and 
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then descends to the next lower cyclotron harmonic frequency as eλ  increases after reaching a 
peak frequency. 

 
The RPI on the IMAGE satellite stimulates short-range electrostatics echoes and long-

range electromagnetic echoes in the Earth’s magnetosphere. The resultant data are presented in 
either a conventional frequency versus time spectrogram (passive mode) or in plasmagrams 
(active mode) that display the amplitude of the received echo and its virtual range (i.e., assuming 
free-space speed of light propagation) as a function of sounding frequency (see Reinish et al. 
[2000] for a description of the instrument and data formats). These plasmagrams are the 
magnetospheric analog of topside-sounders ionograms [Benson et al., 2003]. In this work we will 
concern ourselves mainly with the electrostatic echoes, i.e., the signals known as plasma 
resonances because of their spike-like appearance on the plasmagrams. They correspond to 
waves of slow group velocity that return to the spacecraft following the short-duration RPI pulse. 
The cutoff frequency of an electromagnetic echo provides additional confidence in the 
determination of the local electron density. 

 
The observation of these Qn resonances in the ionosphere provided confidence in the 

resonance identification and consequently their use as an independent diagnostic method for 
determining the local electron density ne and magnetic field strength |B|. Recent RPI 
measurements in the magnetosphere, however, often show a definite difference between the 
observed resonance values and those values estimated from theoretical calculations of the 
dispersion properties of Bernstein waves for an isotropic Maxwellian plasma. In these cases, the 
Qn’s are observed at frequencies consistently lower (within the experimental errors) than 
expected for a Maxwellian plasma, suggesting a departure from such distributions. Christiansen 
et. al. [1971] suggested that the identification of the frequencies of natural emissions, that appear 
to be related to the Qn frequencies, can be explained in terms of a non-thermal plasma that 
contains a tail population of suprathermal particles. In an attempt to explain, on theoretical 
grounds, such non-thermal conditions Belmont [1981] suggested that the dispersion 
characteristics of these resonances not only depends on the density or magnetic field strength, 
but also on the shape of the distribution function (which has been generally assumed to be 
Maxwellian). The idea that the wave dispersion characteristics are not only dependent on the 
physical parameters (e.g., density, temperature, magnetic field, etc.), but that they also depend on 
the shape of the distribution was first postulated by Abraham-Shrauner and Feldman [1977a,b] in 
application to whistler and electromagnetic ion cyclotron waves in the solar wind. Belmont 
[1981] numerically calculated the dispersion characteristics for two model distribution functions: 
a) a background finite temperature Maxwellian plasma mixed with a ring distribution of low 
density and zero temperature (e.g., a delta function in the transverse direction relative to the 
background magnetic field), and b) the superposition of two finite temperature Maxwellians, one 
cold and the other hot. The results of their calculations indicated that the second model (case b) 
was more consistent with the resonance observations. This model, although very reasonable, 
requires the variation of at least four parameters (two densities and two temperatures) in order 
for the model to reproduce the variations in the shape of the distribution function and explain the 
frequency dispersion characteristic of the Bernstein waves. In general this model has a small 
effect on the dispersion characteristics, since it remains fundamentally Maxwellian (but with 
more parameters) and the dielectric tensor becomes just the sum of the dielectric tensors for each 
Maxwellian component; therefore no fundamental change in the dielectric tensor occurs. 
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The purpose of this work is to present a new set of resonance dispersion characteristic 

calculations based upon an isotropic non-thermal kappa distribution function and to compare 
these calculations, and those obtained from an isotropic Maxwellian thermal plasma, with 
IMAGE/RPI observations. The goal is not only to provide and independent diagnostic method 
for determining the local electron density ne and magnetic field strength |B|, but to establish a 
diagnostic inversion tool to provide insights into the nature of the electron velocity distribution 
function in the magnetosphere. The model requires only three parameters to define the shape and 
characteristics of the distribution function. The kappa distribution fundamentally changes the 
form of the dielectric tensor [Mace, 1996; Mace, 2004]. Each tensor element now depend 
additionally on κ, the spectral index of the velocity distribution, which controls the shape of its 
profile. Varying κ from κ > 3/2 to infinity permits the study of a wide variety of different plasma 
conditions, ranging at the extremes, from highly accelerated tails to the thermal Maxwellian case, 
without changing the model equations. 
 
2. The distribution function and theoretical linear dispersion relation model. 
 

In this section we present a kappa velocity distribution function model. Kappa 
distributions are similar to the velocity distributions predicted by Tsallis  [1988, 2004] and 
Tsallis and Brigatti [2004] from an entropy principle based upon non-extensive statistical 
mechanics. Tsallis generalized the traditional Boltzmann-Gibbs-Shannon entropy to understand 
physical non-equilibrium systems (or systems having strong non-Markovian microscopic 
memory and multifractal structured systems) where long-range interactions or long-memory 
effects are important, such as those in space plasmas. These aspects have been recently 
emphasized by Leubner [2004], who showed a link between the kappa distribution and the 
Tsallis distribution where κ measures the degree of non-extensivity of the system. One recovers 
the extensivity (additivity) as κ → ¶ where the system is described by a Maxwellian velocity 
distribution. The Tsallis formalism provides a potentially important microscopic foundation that 
justifies the theory of the kappa velocity distribution. 
 

We also considered a theoretical dispersion relation for electromagnetic Bernstein wave 
modes based upon the kappa velocity distribution. Here we consider a non-relativistic plasma 
system composed of electrons and ions, but where the ion dynamical response is neglected since 
the frequency of the waves we are considering are much greater than any characteristic 
frequency associated with the ions. Thus, the ions are treated as a homogeneous neutralizing 
background plasma where p eM m>> . We further assume that the electron plasma is isotropic 
(i.e., T T ), has no drift, and is characterized by a kappa velocity distribution function. 
The kappa velocity distribution resembles a Maxwellian distribution at low velocities while at 
suprathermal velocities it reduces to a power law. It is defined as follows [Summers and Thorne, 
1991] 

e e T⊥= = e

 

( ) ( )
( )

3 / 22
e12

2
e

1
(v)= where for 3/ 2

1/ 2v1
e e

Af A nκ
κκ

κ
πκθ κ

κ

κθ

−

+

Γ +
= >

Γ − 
+ 

 

 (1) 
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where ( )( ) ( )2 2 22 3/ 2 / and /e e e T mθ κ κ α α= − = e e . This distribution reduces to an ordinary 
Maxwellian with a thermal speed αe in the limit κ → +∞ . A further inspection of the kappa 
distribution shows that it only depends on three parameters, i.e., an electron density ne, an 
electron temperature Te and κ (i.e., the spectral index of the kappa distribution) that controls the 
shape of the distribution function. Figure 1 shows the profile of the kappa distribution function 
for different values of κ (i.e., κ = 2, 3 ,5) including a Maxwellian distribution (i.e., κ = +¶) in 
arbitrary normalized units. The most important aspect of this figure is that the shape of the 
distribution function is controlled by the spectral index κ. Note that the number of suprathermal 
particles increases as κ decreases from a Maxwellian distribution model. 
 
 Recent calculations by Mace [2003, 2004] based upon a Gordeyev integral approach 
provided general expressions for the dispersion relation of both electrostatic and electromagnetic 
Bernstein-mode waves, which propagate perpendicular to the background magnetic field in a 
uniform, isotropic, non-relativistic plasma, that is described by a kappa distribution. Because the 
calculations for the derivation of the dispersion relation are tedious and extensive, we will not 
duplicate them here, but will only present the form of the electrostatic expression. The form of 
the dispersion relation for the electromagnetic case is presented in Appendix A. The electrostatic 
dispersion relation ( ), , 90es kκ ω θ =Λ  = 0 for perpendicular-propagating Bernstein waves in a 
kappa distribution plasma is given by [Mace, 2003, 2004] 
  

( )

( ) ( ) ( )
( )

1/ 2
2 2

,

2 3

1/ 2
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1 1, ,2 1 1, ; ,1 ,1 ;2
2 2

2 1 1/ 2
, ,2

3/ 2 /

es
s s s s

s s s s s s

s s s
s s s

s

s s
s s

k R S
k

R F

S

κ
κ

κ

ω ω ω ωω θ κ λ π π κ λ
λ

ω ω ωκ λ κ λ

λ κ κωκ λ
κ ω

+

       ′ ′Λ = = + + =      Ω Ω Ω Ω       

   ′ ′= − − + −   Ω Ω Ω   

′ Γ + Γ − ′ = Ω Γ + + Ω Γ 
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( ) 1 2
3 31; , ;2

3/ 2 / 2 2 s
s s

F ω ω

s

κ κ κ
κ ω

λ
 ′+ + + + − + − Ω Ω Ω 

(2) 

 
where the subscript s represent the particle specie (s = e for electrons and s = i for ions), ω is the 
wave frequency, k = k⊥ is the perpendicular wave vector, θ is the propagation angle restricted 
only to perpendicular propagation with relation to the background magnetic field B, ωps and Ωs 
are the plasma and cyclotron frequencies, respectively. In the above expression we also defined 
the Debye length (λκ,s) for a kappa plasma and the square of the normalized wavevector (λ′s) 
(correcting a typographical error in Mace [2004]) as  
 

( )
( ) ( )

1/ 2
2

2 2 2
, 2

3/ 2
and 3/ 2 /

1/ 2
s

s s
ps

kκ

κ αλ λ κ
κ ω

 −
′= = − −  

s sα Ω , (3) 

 

 6



which are defined in terms of the thermal speed αs or gyroradius ρs and also depend on the 
electron density ne, the electron temperature Te, and the magnetic field strength B. Here, the 
functions 1F2 and 2F3 are the generalized hypergeometric functions. In general the shape 
parameter κ is different for each specie (i.e., κ = κs). For this work however, since the only 
dynamical specie are the electrons, we will assume that κ is a constant for that specie. 
 

The electromagnetic dispersion relation ( ), , 90em kκ ω θΛ =  = 0 for Bernstein modes 
[Mace, 2004] also depends on similar parameters, so we refer to it by a similar notation 
 

( , , 90; / , 0em
ps s skκ ω θ ω λ′Λ = Ω ) =   (4) 

 
but the details of the expression are left for Appendix A. We also present in the Appendix, the 
electrostatic and electromagnetic dispersion relation for a Maxwellian plasma (i.e., when 

). The Maxwellian dispersion relation is presented in a manner similar to that given by 
Stix [1992], Oya [1971] and Puri et al. [973] 
κ → +∞

 
The expressions above seem considerably complex, however they can be solved 

numerically with great accuracy. Figure 2 is an example of the numerical solution of the 
electromagnetic dispersion relation for kappa (see equation A.2) and Maxwellian distributions 
(see equation A.7) for Bernstein mode waves in the case of an electron plasma with a 
temperature of about 51eV (i.e.,αe/c = 0.01 where c is the vacuum speed of light), a ratio of the 
upper hybrid frequency to cyclotron frequency of ωuh /Ωe = 4.5 (i.e.,   ωpe /Ωe = 4.39), and κ = 2. 
It shows the wave frequency ω /Ωe versus wave vector kρe in normalized dimensionless units for 
different bands of the Bernstein modes. Figure 2 shows that the Bernstein modes for a kappa 
plasma can support the previously discussed Qn waves, depending on whether the mode’s 
frequency at vanishing kρe lies above or below the upper hybrid frequency ωuh /Ωe = 4.5. A 
comparison of the solutions for the kappa and Maxwellian distributions illustrate that, 
irrespective of the frequency domain, there are considerable differences in the dispersion 
relation, suggesting a significant dependence of the shape of the distribution function. This was 
also clearly illustrated by Mace [2004] who considered several values of κ. Furthermore, note 
that the solution of the dispersion relation illustrated in Figure 2 covers the full range of domain 
of the electromagnetic Bernstein waves for which | kρe| << 1 to the electrostatic regimes for 
which |kρe| ≥ 1. Thus, for completeness, we also present the dispersion relation for the 
electromagnetic extraordinary (X) mode as determined from the dispersion relation for kappa 
and Maxwellian distributions. Note that these solutions are superposed on each other indicating 
that they are identical and suggesting that for perpendicular propagating electromagnetic waves 
there is basically no difference between the two velocity distributions in the electromagnetic 
domain. Nevertheless, this is not the case for the electrostatic regime in which significant 
differences between the dispersion relations are observed. 
 
In the next section we compare the numerical solution of both the dispersion relation for kappa 
and Maxwellian distributions of Bernstein waves with observed resonances from the 
IMAGE/RPI instrument. 
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3. The IMAGE/RPI observations 
 
 Figure 3 shows RPI data in the form of a plasmagram obtained when IMAGE was at a 
geocentric distance of about 6.0 RE as it approached apogee. The plasmagram shows Qn 
resonances with n = 5 to 9 in the observed frequency range. During this time, other resonances 
were identified, and an electromagnetic X-mode echo trace, that enabled the plasma conditions 
appropriate for this record to be determined [Benson et al., 2003].  From the nfce resonances 
(observed from n = 2 to 9) an average value for fce = 4.73 ± 0.02 kHz was determined. Using this 
value, and the observed resonances at fpe and fuh, a self-consistent value for fpe = 26.4 ± 0.2 kHz 
was obtained that yielded an X-mode cutoff frequency consistent with a projection of the 
observed portion of the reflection trace to zero virtual range. Thus for this record, fpe/fce = 5.58 ± 
0.07 and fuh/fce = 5.67 ± 0.07. Note that the nfce resonances appear without Qn resonances when 
nfce < fpe and that the Qn resonances observed when nfce > fuh tend to merge with the nfce 
resonances as n increases. Also note that there are more short time delay (i.e., low virtual range) 
sounder-stimulated emissions between the nfce values in the frequency domain below fpe than 
above it. These emissions are attributed to the Dn resonances [Benson et al., 2003]. There are 
also strong natural emissions, i.e., signals of equal intensity in all virtual range bins, between the 
nfce values (particularly in the frequency domain below fpe). Figure 4 presents an enlargement of 
Figure 3 in the frequency range of interest for the present investigation, i.e., the region 
containing the Qn resonances, for all three receiving antennas. Since the received signals are the 
result of propagation paths from the transmitting X antenna, an inspection of the data from all 
three receiving antennas leads to the best determination of the Qn frequencies. These records 
clearly illustrate the wide effective bandwidth of strong sounder-stimulated magnetospheric 
resonances (typically 5 to 6 times the RPI receiver bandwidth) [Benson et al., 2003]. The 
normalized values for the Qn resonances observed in Figures 3 and 4 are presented in Table 1. 
 

In order to fit the resonances, we used the observed ratio of fuh/fce (or fpe/fce). Since the 
solution of the dispersion relation in the electrostatic regime is highly insensitive to the 
temperature (it is more sensitive to the temperature anisotropy; however this is not the situation 
considered in this work) we fix the value of the temperature to about 51eV, which is a reasonable 
value for the inner magnetosphere. The solutions over the frequency and wave number ranges 
considered, however, are identical to those we would have obtained had we used a value of 1keV 
for the temperature, which is typical of tail outer magnetosphere conditions. In order to obtain 
the value of κ, we required that all the Qn-resonances are generated in the same plasma region, 
characterized by a single value of κ. In other words, we treat the resonances as in the field of 
spectrography, were the spectral lines are produced by similar plasma characteristics. Thus, by a 
trial and error bracketing scheme we seek to find the κ value that best fits the lowest and highest 
Qn-resonances within the measured error bounds, and then we proceed with such value to obtain 
the frequency characteristics of all the intermediate Qn-resonaces. This scheme seems the most 
reasonable and provides the most confidence in the solution. 
  

Figure 5 present the dispersion characteristics of the Bernstein mode waves with ω ≥ ωuh 
obtained from the numerical solution of the dispersion relation for a Maxwellian and kappa 
distributions for the parameters corresponding to the April 8, 2002 RPI data of Figures 3 and 4. 
The bracketing search yields κ = 2.1 as the best value that fits the lowest and highest (i.e., n = 5 
and 9 respectively) Qn resonances, so we fix this value for the solution of all other intermediate 
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resonances of the dispersion curves. Thus, Figure 5 shows the normalized frequency (ω/Ωce) as a 
function of the normalized perpendicular wave vector (kρe) over two orders of magnitude for the 
Qn bands between 5 to 9 in the electrostatic regime (i.e., 0.1 < kρe < 10). Dispersion calculations 
were only performed for those bands corresponding to conditions for the Qn resonances, i.e., for 
the bands containing the ωuh and for those at higher frequencies. Note that the maximum 
frequency peak of the Qn resonances for the kappa velocity distribution, lie consistently below 
those value obtained from a Maxwellian velocity distribution. These calculated values are 
compared with the RPI observations of Figures 3 and 4 in Table 1 and Figure 6. The observed 
values in Table 1 and Figure 6 indicate that the peak frequency value obtained from the solution 
of the kappa dispersion relation at zero group velocity agree within the error bounds of the 
observed Qn-frequencies, whereas the calculations based upon Maxwellian distribution yields 
values well above the observed values. This suggests that the plasma distribution in the regions 
of the observations is closer to a kappa velocity distribution function with non-thermal tails, 
rather than to a Maxwellian distribution.  
 

Figure 7 shows RPI data obtained from an outbound orbit when IMAGE was at a 
geocentric distance of about 4.9 RE. In this case, the plasma resonances indicated fpe/fce = (20.5 ± 
0.4)/(9.17 ± 0.03) = 2.24 ± 0.05 and fuh/fce (22.5 ± 0.3)/(9.17 ± 0.03)  = 2.45 ± 0.04. The 
corresponding X-mode cutoff frequency is consistent with a projection to zero virtual range of 
the observed reflection trace. The calculated Z-mode cutoff frequency is slightly above a strong 
natural emission that corresponds to the calculated position of the D1+ resonance and there is a 
sounder-stimulated resonance at fuh/2; such features have been observed previously in the 
magnetosphere [Benson et al., 2003]. In addition to the main Qn resonances observed for n = 2-
4, additional frequency components are observed. The clearest example is at 29.6 kHz on the X-
antenna plasmagram in Figure 7, i.e., the short-duration sounder-stimulated resonance with what 
appears as a weak superimposed natural emission (observed in nearly all range bins) 1.0 kHz 
above the labeled Q3 resonance at 28.6 kHz. Such components to the Qn resonances have been 
observed previously by sounders both in the magnetosphere [see, e.g., Higel, 1978; Trotignon et 
al., 2001; Benson et al., 2003] and in the ionosphere [Benson, 1982]. The normalized values for 
what are considered to be the main Qn resonances observed in Figure 7 are presented in Table 2. 
 

Figure 8 shows the dispersion properties of the Bernstein mode waves with ω > ωuh 
obtained from the numerical solution of the dispersion relation for Maxwellian and kappa 
distributions corresponding to the parameters of the April 6, 2002 RPI data of Figure 7. In a way 
similar to the previous example we found that the best value that fits the lowest and highest Qn 
resonances was κ = 1.9, so we fix this value for the solution of the intermediate dispersion curve. 
Similarly, we show only the dispersion calculations for those bands corresponding to conditions 
for the Qn resonances, i.e., for the bands containing the ωuh and for those at higher frequencies. 
As before, the maximum peak of the Qn resonances for the kappa distribution, lie consistently 
below the value obtained from a Maxwellian distribution. These calculated values are compared 
with the RPI observations of Figure 7 in Table 2 and Figure 9. The values in Table 2 and Figure 
9 indicate that the peak frequency values obtained from the solution of the kappa dispersion 
relation at zero group velocity gives better agreement with the Qn resonances than the solution 
based on a Maxwellian distribution, within the error bounds of the observed frequencies. The 
calculated value for the kappa distribution is just outside the estimated errors associated with the 
observed Q3 value. The calculations, however, are based on a single value for fpe/fce and do not 
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consider the observed uncertainty in this key parameter. The better agreement obtained with the 
kappa distribution compared with the Maxwellian distribution, again indicates that the plasma 
distribution in the regions of the observations must be closer to a kappa distribution function 
with non-thermal tails, rather than a Maxwellian. 
 
 
4. Summary & Discussion  
 

We have investigated the perpendicular propagation of electron Bernstein waves 
exhibiting Qn-resonances in an isotropic non-relativistic plasma having (i) kappa and (ii) 
Maxwellian velocity distributions. The calculations were done using the full electromagnetic 
dispersion relation without employing the electrostatic assumption. The results of our calculation 
have been compared with the measured Qn-resonances obtained from the RPI instrument on the 
IMAGE satellite. 
 

The dispersion relation for the kappa distribution shows a significant sensitivity to the 
shape of the distribution function, as measured by the spectral index κ in agreement with earlier 
results by Mace [2004]. For the isotropic case considered here, the solution of the dispersion 
relation depends only on three parameters, namely, the ratio of ωpe /Ωe, the ratio of the thermal 
velocity to the speed of light αe/c and κ. However, over the range of frequency and wave number 
considered, our numerical calculations have shown that the dispersion characteristics are weakly 
dependent on the αe/c ratio; thus reducing the effective parameters to two. Other models, such as 
the two Maxwellian component used by Belmont [1981] requires at least four parameters, and 
their corresponding dispersion relations are not significantly sensitivity to the shape of the 
distribution function. 
 

There are some similarities between the Maxwellian and the kappa distribution 
resonances calculations. For example, the wave propagation is bounded by the electron cyclotron 
harmonics. All Qn resonances at and above the upper hybrid band have a maximum peak for 
both the kappa and Maxwellian distribution models. However, the maximum peak for the kappa 
distribution is consistently lower than that for the Maxwellian distribution. Perhaps the most 
important difference between the dispersion characteristics of the Qn resonances for these 
distributions is that the characteristics of the kappa distribution are markedly dependent on κ, 
(see also Mace, [2004]). 
 

A comparison of the measured IMAGE/RPI Qn resonances with those calculated from 
the dispersion relations based upon both Maxwellian and kappa distributions show better 
agreement with the kappa distribution model. The calculated Qn resonances are also sensitive to 
the uncertainties in the fpe/fce ratio, which may account for one estimated case where the value is 
just outside the estimated errors associated with the observed value for the kappa distribution; 
however, this issue is beyond the scope of this paper and will be addressed in a subsequent 
paper. In general, the good agreement with the observations suggests that the electron velocity 
distribution function model in the inner magnetosphere has a significant non-thermal component, 
which can be accurately modeled by a kappa distribution function. Furthermore, this approach 
can be used not only as an independent diagnostic method for determining the local electron 
density ne and magnetic field strength |B|, but also to establish a diagnostic inversion tool to 
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provide insights into the nature of the electron velocity distribution function in the 
magnetosphere. 
 

In general, sounder excited resonances generate significant electron temperature 
anisotropies (i.e., T T ), near the spacecraft [James, 1983 and references therein]. At 
present, our calculations are for isotropic plasmas and do not consider such effects. This issue, 
however, will be addressed in a future publication. 

/ 1e e⊥ >
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5. Appendix A 
 

Here we present a description of the electromagnetic dispersion relation for perpendicular 
propagating Bernstein mode waves in both kappa and Maxwellian plasmas. For the details of 
such calculations we refer the readers to the paper by Mace [2004] on the Bernstein modes for a 
kappa plasma and to [Stix, 1992; Krall and Trivelpiece, 1973; Puri et al., 1973] for the 
Maxwellian plasma. 
 

The electromagnetic dispersion relation for perpendicular propagating Bernstein mode 
waves for a kappa distribution is given by the nontrivial solution of the determinant of a matrix 
tensor [Mace, 2004] 

( ) ( ) ( ) ( ) (
2

2
, ,, , 2det , , 90 0 where , ,em

i j i j i ji j
ck k k κ

κ κ κω θ ω δ ω
ω

Λ = = = = − +Λ Λ k ε k)k  (A.1) 

where Λκ,(i,j) is a 3x3 matrix tensor and εκi,j is the dielectric tensor. The determinant of the above 
equation splits into two factors, one yielding the dispersion relation for ordinary modes and the 
other for extraordinary modes. It is the latter that will be of primary concern here, and its 
dispersion relation is written as [cf., Mace, 2004] 
 

2 2

11 22 12 212 0k cκ κ κ κε ε ε ε
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where σs is the charge state and the function Uµ,ν(z,λ) is defined 
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and λκ,s  and λs′ are defined as 
 

( )
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Similarly, the electromagnetic dispersion relation for perpendicular propagating 

Bernstein mode waves for a Maxwellian distribution is given by the nontrivial solution of the 
determinant of a matrix tensor [Stix, 1992; Krall and Trivelpiece, 1973; Puri et al., 1973] 

( ) ( ) ( ) (
2

2
, ,2det , , 90 0 where , ,em

i j i j i j i j
ck k kω θ ω δ ω
ω

Λ = = = = − +Λ Λ k ε k),k  (A.6) 

where Λi,j is a 3x3 matrix tensor and εi,j is the dielectric tensor. The determinant of the above 
equation splits into two factors, one yielding the dispersion relation for ordinary modes and the 
other for extraordinary modes. Here we are only concerned with the extraordinary mode. 
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where the dielectric tensor elements are defined as 
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where we defined ( ) (s
n s n se Iλ )λ λ−Λ = , In is the modified Bessel function and Λ is the derivative 

with respect to λ
n′

s. Comparing the square of the normalized wave vector for a kappa (λ′s) and a 
Maxwellian plasma (λs) we have 
 

( ) ( ) 2 23/ 2 3/ 2s s k sλ κ λ κ′ = − = − ρ .       (A.9) 
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Table 1. Observed and calculated normalized Qn corresponding to the IMAGE/RPI data for 
Figures 3 and 4 (April 8, 2002, 1508:25 UT). These calculations are based on a kappa 
distribution function with κ = 2.1 and an electron temperature Te=51 eV. The values of fuh/fce = 
5.67≤0.07, fpe/fce = 5.58≤0.07, and fce = 4.73≤0.08 kHz were used. 
 

n Observed 
(fQn/fce) 

Std. Dev. 
(±σn) 

Kappa 
Calculated
(fQn/fce) 

Kappa 
kρe 

Maxwellian 
Calculated 
(fQn/fce) 

Maxwellian
kρe 

5 5.81 0.05 5.767 0.977 5.930 1.517 
6 6.38 0.05 6.430 2.810 6.619 2.908 
7 7.23 0.05 7.280 4.470 7.420 4.016 
8 8.14 0.06 8.199 5.560 8.299 5.042 
9 9.07 0.06 9.150 6.742 9.224 6.022 
 
 
 
 
 
 
 
 
Table 2. Same as Table 1 but corresponding to the IMAGE/RPI data for Figure 7 (April 6, 2002, 
0530:57 UT) with κ = 1.9 and an electron temperature Te = 51 eV, fuh/fce = 2.45≤0.05 (fpe/fce = 
2.24≤0.05). 
 

n Observed 
(fQn/fce) 

Measured
Std. Dev. 
(±σn) 

Kappa 
Calculated
(fQn/fce) 

Kappa
kρe 

Maxwellian 
Calculated 
(fQn/fce) 

Maxwellian
kρe 

2 2.55 0.02 2.54 0.611 2.60 0.795 
3 3.12 0.02 3.21 2.153 3.28 1.928 
4 4.07 0.03 4.11 3.438 4.16 2.881 
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Figure Captions 
 
Figure 1. Kappa distributions, in arbitrary normalized units, for different κ values (κ = ¶ 
corresponds to a Maxwellian velocity distribution). 
 
Figure 2. Dispersion curves for kappa velocity distribution (dashed lines) and Maxwellian 
distribution (solid lines) for plasma parameters fuh/fce = 4.5 (fpe/fce = 4.39), αe/c = 0.01 (Te = 
51eV), and κ = 2 as obtained from the electromagnetic dispersion relation in A.2 and A.7. 
 
Figure 3.  (top) RPI plasmagram recorded at 1508:25 UT on 8 April 2002 displaying the virtual 
range of the color-coded signal strength received on the x antenna as a function of sounding 
frequency in 134 steps of 0.3 kHz (the receiver bandwidth) from 6 to 46 kHz. The scaled values 
for the plasma resonances identified as occurring at nfce, fpe, fuh, and fQn, are designated at the top 
by n, p, u, and Qn, respectively. The propagation cutoff frequency at the satellite for the X-mode 
echo, as calculated from the resonance-determined fce and fpe values, is designated at the top by 
an x. (bottom) Portion of the IMAGE orbit (red trace) projected in the x-z plane with L = 4 and L 
= 6.5 dipole field lines included. 
 
Figure 4.  (top) Expanded version (26 to 46 kHz) of the 1508:25 UT, 8 April 2002 RPI 
plasmagram of Figure 3 highlighting the Qn resonances. (middle and bottom). Same for the y 
and z antennas, respectively. 
 
Figure 5. Numerical solution of the electromagnetic dispersion relation for kappa velocity 
distribution (dashed lines) and Maxwellian distribution (solid lines) for conditions appropriate to 
the RPI data of Figures 3 and 4, i.e., fuh/fce = 5.666 (fpe/fce = 5.577), αe/c = 0.01 (Te = 51eV), and 
κ = 2.1. 
 
Figure 6. Comparison of the Qn resonance calculations based upon a kappa velocity distribution 
(dashed line) and Maxwellian distributions (solid line) with the RPI observed Qn frequencies 
(open circles). 
 
Figure 7.  Same as Figure 3 except for the x, y and z antenna RPI plasmagrams recorded at 
0520:57 UT on 6 April 2002. In this case, besides the labeled features in Figure 3, a resonance 
identified as fuh/2 is labeled as u/2 and the propagation cutoff frequency at the satellite for the Z-
mode echo, as calculated from the resonance-determined fce and fpe values, is labeled as z. 
 
Figure 8. Same as in Figure 5 but for conditions appropriate to the RPI data of Figure 7, i.e., 
fuh/fce = 2.454 (fpe/fce = 2.241), αe/c = 0.01 (Te = 51eV), and κ = 1.9. 
 
Figure 9. Similar to Figure 6 but for conditions appropriate to the RPI data in Figure 7. 
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Figure 1. Kappa distributions, in arbitrary normalized units, for different κ values (κ = ¶ 

corresponds to a Maxwellian velocity distribution).
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Figure 2. Dispersion curves for kappa velocity distribution (dashed lines) and Maxwellian 

distribution (solid lines) for plasma parameters fuh/fce = 4.5 (fpe/fce = 4.39), αe/c = 0.01 (Te = 
51eV), and κ = 2 as obtained from the electromagnetic dispersion relation in A.2 and A.7.
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Figure 3.  (top) RPI plasmagram recorded at 1508:25 UT on 8 April 2002 displaying the virtual 
range of the color-coded signal strength received on the x antenna as a function of sounding 
frequency in 134 steps of 0.3 kHz (the receiver bandwidth) from 6 to 46 kHz. The scaled values 
for the plasma resonances identified as occurring at nfce, fpe, fuh, and fQn, are designated at the top 
by n, p, u, and Qn, respectively. The propagation cutoff frequency at the satellite for the X-mode 
echo, as calculated from the resonance-determined fce and fpe values, is designated at the top by 
an x. (bottom) Portion of the IMAGE orbit (red trace) projected in the x-z plane with L = 4 and L 
= 6.5 dipole field lines included. 
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Figure 4.  (top) Expanded version (26 to 46 kHz) of the 1508:25 UT, 8 April 2002 RPI 
plasmagram of Figure 3 highlighting the Qn resonances. (middle and bottom). Same for the y 

and z antennas, respectively.

 23



 
 
 
 
Figure 5. Numerical solution of the electromagnetic dispersion relation for kappa velocity 
distribution (dashed lines) and Maxwellian distribution (solid lines) for conditions appropriate to 
the RPI data of Figures 3 and 4, i.e., fuh/fce = 5.666 (fpe/fce = 5.577), αe/c = 0.01 (Te = 51eV), and 
κ = 2.1.
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Figure 6. Comparison of the Qn resonance calculations based upon a kappa velocity distribution 

(dashed line) and Maxwellian distributions (solid line) with the RPI observed Qn frequencies 
(open circles).
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Figure 7.  Same as Figure 3 except for the x, y and z antenna RPI plasmagrams recorded at 
0520:57 UT on 6 April 2002. In this case, besides the labeled features in Figure 3, a resonance 

identified as fuh/2 is labeled as u/2 and the propagation cutoff frequency at the satellite for the Z-
mode echo, as calculated from the resonance-determined fce and fpe values, is labeled as z.
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Figure 8. Same as in Figure 5 but for conditions appropriate to the RPI data of Figure 7, i.e., 
fuh/fce = 2.454 (fpe/fce = 2.241), αe/c = 0.01 (Te = 51eV), and κ = 1.9.
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Figure 9. Similar to Figure 6 but for conditions appropriate to the RPI data in Figure 7. 
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